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Abstract

In this work, we propose a novel framework1

for image segmentation guided by visual prompt-2

ing which leverages the power of vision founda-3

tion models. Inspired by recent advancements in4

computer vision, our approach integrates multi-5

ple large-scale pretrained models to address the6

challenges of segmentation tasks with limited and7

sparsely annotated data interactively provided by a8

user. Our method combines a frozen feature extrac-9

tion backbone with a scalable and efficient proba-10

bilistic feature correspondence (soft matching) pro-11

cedure derived from Optimal Transport to couple12

pixels between reference and target images. More-13

over, a pretrained segmentation model is harnessed14

to translate user scribbles into reference masks and15

matched target pixels into output target segmen-16

tation masks. This results in a framework that17

we name Softmatcher, a versatile and fast training-18

free architecture for image segmentation by visual19

prompting. We demonstrate the efficiency and scal-20

ability of Softmatcher for real-time interactive im-21

age segmentation by visual prompting and show-22

case it in diverse visual domains including techni-23

cal visual inspection use cases.24

1 Introduction25

Foundation Models ushered in a significant shift in how ma-26

chine learning models are developed and deployed, pivoting27

from a paradigm centered on training use case-tailored mod-28

els on task-specific data to a paradigm where single generalist29

models are pretrained on diverse large-scale data, then fine-30

tuned for a wide range of tasks [Bommasani et al., 2022].31

Specifically in computer vision, models such as SAM [Kir-32

illov et al., 2023], CLIP [Radford et al., 2021], and self-33

supervised backbones such as DINO [Caron et al., 2021] and34

DINOv2 [Oquab et al., 2023] have unlocked powerful and35

versatile visual functionalities like object detection, semantic36

segmentation and expressive embeddings that are at the core37
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of a multitude of diverse applications. In particular, the pos- 38

sibility of using and combining these models in novel ways 39

to address specific challenges in applied computer vision has 40

been a topic of recent interest, including as a means to design 41

new workflows in technical domains such as visual inspection 42

(see e.g. [Rigotti et al., 2023]). 43

In this work we take inspiration from the recent advance- 44

ments driven by the approach of compositionally combining 45

multiple Foundation Models to address sophisticated com- 46

puter vision tasks. Specifically, we focus on the problem of 47

image segmentation, which is a fundamental task in computer 48

vision with a wide range of applications, including medi- 49

cal imaging, autonomous driving, and visual inspection, with 50

a particular focus in developing a human-computer interac- 51

tion workflow to facilitate open-world segmentation of im- 52

ages by visual prompting through sparse user annotations. 53

For that we largely build upon a previous architecture named 54

Matcher which was designed to perform training-free few- 55

shot segmentation using in-context examples by means of off- 56

the-shelf vision Foundation Models [Liu et al., 2023]. Our 57

framework enhances this approach’s interactivity in two cru- 58

cial ways: 1) we integrate a pretrained segmentation model 59

to translate user scribbles on a representative sample of the 60

object class to be segmented into reference masks which are 61

then passed to the few-shot segmentation architecture; 2) we 62

develop a scalable probabilistic feature soft-matching proce- 63

dure whose efficiency and low-latency allows us to embed 64

few-shot segmentation in a real-time interactive workflow. 65

2 Related Work 66

The Segment Anything Model (SAM) [Kirillov et al., 2023] 67

has popularized the prompting paradigm in computer vision 68

by enabling fine-grained image segmentation through inter- 69

active prompts in the form of points and/or bounding boxes. 70

Both Visual Prompting via Inpainting [Bar et al., 2022] 71

and SegGPT/Painter [Wang et al., 2023] presented visual 72

prompting models trained on few-shot image segmentation 73

datasets. These models operate on a reference image and cor- 74

responding segmentation masks, and generate a segmentation 75

mask for a target image based on the reference. 76

[Zhang et al., 2023] introduced a training-free method for 77

one-shot segmentation leveraging pretrained image encoders 78

in conjunction with SAM. The labeled pixels within the an- 79

notated mask on a reference image are assigned to pixels on 80
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Figure 1: Visual Prompting Framework: 1) Prompting & reference segmentation: Coarse user annotations (scribbles) are converted to
reference segmentation mask using SAM. 2) Matching: Image features are extracted using DINOv2 from reference and target images. The
feature patches from within the reference mask are matched to all patches in the target through our probabilistic matching procedure, resulting
in a probability map over target images. This is sampled to obtain sample points which are then clustered. 3) Mask generation: For each
cluster the respective points are passed to SAM to generate mask proposals. Each mask proposal is scored and discarded based on SAM-
predicted IOU or merged into the final output mask.

target images thanks to a cosine similarity matrix of their cor-81

responding encoded patches. The target patch of maximum82

similarity is then utilized by SAM to generate a segmentation83

mask for the target object.84

[Gupta and Kembhavi, 2022] presented a neuro-symbolic85

approach for solving complex visual tasks given natural lan-86

guage instructions by leverages the in-context learning ability87

of LLMs to generate modular programs that combine pre-88

trained models leveraging their compositionality, a feature89

that has received recent interest for enabling flexible gener-90

alization (see e.g. [Ito et al., 2022]).91

[Liu et al., 2023] introduced Matcher, an approach that92

uses a bidirectional matching procedure to match encoded93

reference and target image patches using the Hungarian algo-94

rithm, an accurate but slow assignment algorithm with worst-95

case complexity cubic in the size of the problem [Crouse,96

2016]. Similarly to [Zhang et al., 2023], one-shot (or few-97

shot) segmentation is implemented by assigning annotated98

encoded pixels on reference images to encoded target pixels,99

which then serve as prompts for SAM to produce segmenta-100

tion mask proposals on the target images. The set of mask101

proposals are finally scored and either accepted or rejected.102

[Janouskova et al., 2023] proposed a framework for model-103

assisted labeling of visual inspection defects through an inter-104

active annotation process leveraging gradient-based explain-105

ability to improve the efficiency of the provided labels.106

3 Visual Prompting Framework107

System architecture. Figure 1 presents our Sofmatcher108

framework for interactive image segmentation guided by vi-109

sual prompting on a reference image. This consists of 3 steps:110

1) Prompting & reference segmentation, where a user pro- 111

vides scribbles on the reference image indicating the object 112

class to be labeled on the target images, and where the scrib- 113

bles are used as sparse prompt for SAM which then is used to 114

output a reference mask; 2) Matching, where soft probabilis- 115

tic matching (detailed below) outputs a probability map over 116

pixels of each target image quantifying their match to pix- 117

els in the reference mask; points are then sampled from the 118

probability map, clustered and used for 3) Mask generation, 119

where clustered points are used as sparse prompts to SAM to 120

generate mask proposals; these are filtered based on SAM’s 121

IoU predictions and aggregated into the mask output. 122

The key innovations of our framework compared to pre- 123

vious approaches like Matcher [Liu et al., 2023] are aimed 124

at producing an architecture that is amenable to being em- 125

bedded in an interactive object segmentation workflow where 126

users can provide visual prompts by coarsely annotating ref- 127

erence images through scribbles and interact in real-time with 128

the resulting segmentation masks, possibly by correcting or 129

complementing them with additional annotations. 130

Our first innovation for this is the Prompting & reference 131

segmentation step in Fig. 1, which, while conceptually sim- 132

ple, provides a way for the user to directly and intuitively 133

prompt the segmentation pipeline with coarse visual prompts 134

(scribbles) instead of requiring detailed segmentation masks. 135

Our second major innovation is a computationally efficient 136

version of the Matching step in Fig. 1, and was dictated by 137

the requirement of low-latency segmentation and the obser- 138

vation that feature matching procedure used in the past like 139

the Hungarian algorithm (see e.g. [Liu et al., 2023]) display 140

a worst-case computational complexity that scales cubically 141



Figure 2: Relative timing of different matching procedures com-
puted on 1 CPU core on a Dual AMD EPYC 7003/7002 Series Pro-
cessors, assuming a featurization based on a VIT encoder with patch
size of 14, feature size of 768.

with image sizes (number of patches) [Crouse, 2016], mak-142

ing them unpractical for an interactive workflow. Instead143

of using (Hungarian) bipartite matching based on the cosine144

similarity between reference features and target features we145

opt for an Optimal Transport (OT) approach based on the146

quadratic cosine similarity matrix as cost matrix. While very147

related, this method allows us to motivate a sequence of ap-148

proximations for an efficient implementation of the match-149

ing procedure: we first introduce an entropic regularization,150

then consider the case of large regularization limit where151

the solution to the OT problem converges to the geomet-152

ric mean of softmaxed cosine similarity maps between indi-153

vidual reference features and target feature maps (where the154

averaging is conducting across reference features) [Dognin155

et al., 2019], an operation which only has quadratic com-156

plexity in the number of image patches complexity and re-157

sults in our Softmatcher procedure. Moreover, it affords158

an even more scalable implementation by approximating the159

softmax computation of reference-target feature similarities160

through Random Fourier Features [Rahimi and Recht, 2007;161

Choromanski et al., 2020], which we call Softmatcher RFF.162

Figure 2 compares the timing of matching reference and163

target image features with the Hungarian algorithm, com-164

pared to our proposed soft matching methods as a function165

of image size assuming a featurization based on a VIT en-166

coder with patch size of 14, feature size of 768. Softmatcher167

is around 6x faster than the Hungarian algorithm at image size168

448, and this discrepancy quickly increases with image size,169

due to its better computation complexity scaling. Softmatcher170

RFF is slightly faster and displays even better scalability.171

We evaluate our visual prompting pipeline on FSS-1000172

[Li et al., 2020], which consists of 1000 object classes with173

pixel-wise annotations. FSS-1000 contains many objects not174

part of any previously annotated dataset (e.g., tiny daily ob-175

jects, merchandise, and cartoon characters). As this disentan-176

gles previous knowledge from pretrained models to a certain177

degree, it lends itself well as a few-shot benchmark.178

We integrate this improved matching pipeline into an inter-179

active Visual Prompting platform that allows users to segment180

objects classes of interest by merely highlighting representa-181

FSS-1000 Matcher SM (ours) SM RFF (ours)
one-shot 87.0 85.5± 0.7 85.9± 0.6
five-shot 89.6 87.1± 0.1 87.1± 0.3

Table 1: Few-shot evaluation on FSS-1000: We compare perfor-
mance in terms of IOU of Matcher with our Softmatcher (SM) and
Softmatcher RFF (SM RFF) methods on FSS-1000.

tive objects in one or more reference images with scribbles. 182

Given the improved computation complexity, our method al- 183

lows the user to iterate in real-time with the segmentation out- 184

puts, adding additional scribbles on additional references to 185

improve segmentation in case the model missed something, 186

resulting in an intuitive and seamlessly interactive workflow.s 187

Deployed service and front-end. The interactive web in- 188

terface is designed to provide seamless interaction between 189

the user and the Softmatcher pipeline. It consists of a front- 190

end built with Angular, a Python API back-end, and an in- 191

ference service using Torch Serve. Users add scribbles to 192

any image to mark objects of interest. The visual prompt- 193

ing pipeline then highlights similar objects with precise seg- 194

mentation masks the target images. If the user is not satisfied 195

with the initial results, they can refine the outputs by itera- 196

tively adding or deleting scribbles. Alternatively, instead of 197

adding more scribbles, users can add more prompts by con- 198

verting output segmentation masks from a previous run into 199

reference masks. These reference masks will skip step 1 of 200

the pipeline (see Fig. 1). The system also allows for scribbles 201

to be classified into different categories, enabling the creation 202

of segmentation masks for multiple classes. 203

The process of repeatedly adding and adjusting scribbles 204

provides users with a deeper understanding of how the model 205

operates. By understanding the model’s capabilities and lim- 206

itations, users learn to collaborate with the model more ef- 207

fectively, leading to better outcomes. We’ve also started to 208

enhance our framework’s interactivity with vision-language 209

models like CLIP, enabling the use of text prompts in addi- 210

tion to reference scribbles. This opens up the possibility to 211

combine visual and text prompts to refine masks mutually and 212

address scenarios where scribbling alone is not be enough. 213

Demonstration. We illustrate how users typically engage 214

with our web interface and the visual prompting pipeline 215

through three sample projects. The first two projects illustrate 216

a general use case on everyday objects, while the third shows 217

a domain-specific proprietary defect detection dataset. Our 218

demonstration covers the interactive process of adding scrib- 219

bles to images, executing the pipeline to receive segmentation 220

masks, and then enhancing the results by adding additional 221

scribbles. Furthermore, we showcase the capability for users 222

to process images with references from various classes. 223
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